n-channel entropy-constrained multiple-description lattice vector quantization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

n-Channel Asymmetric Entropy-Constrained Multiple-Description Lattice Vector Quantization

This paper is about the design and analysis of an index-assignment (IA) based multiple-description coding scheme for the n-channel asymmetric case. We use entropy constrained lattice vector quantization and restrict attention to simple reconstruction functions, which are given by the inverse IA function when all descriptions are received or otherwise by a weighted average of the received descri...

متن کامل

Multiple Description Lattice Vector Quantization Multiple Description Lattice Vector Quantization

This thesis studies the multiple description vector quantization with lattice codebooks (MDLVQ). The design of index assignment is crucial to the performance of MDLVQ. However, to our best knowledge, none of previous index assignment algorithms for MDLVQ is optimal. In this thesis, we propose a simple linear-time index assignment algorithm for MDLVQ with any K ≥ 2 balanced descriptions. We prov...

متن کامل

Multiple Description Lattice Vector Quantization

We consider the problem of designing structured multiple description vector quantizers. We present a general procedure for designing such quantizers based on the algebraic structure of the lattices, and we present detailed results for the hexagonal lattice: algorithms, asymptotic performance, and numerical simulations. A salient property of the proposed construction is that the second moment of...

متن کامل

Multiple-Description Lattice Vector Quantization

In this thesis, we construct and analyze multiple-description codes based on lattice vector quantization.

متن کامل

Entropy-constrained Vector Quantization

| Entropy-constrained vector quantization (ECVQ) 3] offers substantially improved image quality over vector quan-tization (VQ) at the cost of additional encoding complexity. We extend results in the literature for fast nearest neighbor search of VQ to ECVQ. We use a new, easily computed distance that successfully eliminates most codewords from consideration.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2006

ISSN: 0018-9448

DOI: 10.1109/tit.2006.872847